4.7 Article

Earlywood and Latewood Stable Carbon and Oxygen Isotope Variations in Two Pine Species in Southwestern China during the Recent Decades

Journal

FRONTIERS IN PLANT SCIENCE
Volume 7, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2016.02050

Keywords

stable carbon isotope; stable oxygen isotopes; intrinsic water use efficiency; subtropical pine species; Asian summer monsoon; intra-annual resolution

Categories

Funding

  1. Scientific fund of Yunnan Province, China [2013FB081]
  2. National Natural Science foundation of China [31300333, 31370496, U1502231]
  3. Robert-Bosch Foundation (Stuttgart, Germany)
  4. Light of West China Program
  5. Outstanding Young Research Fund of Chinese Academy of Sciences (CAS)

Ask authors/readers for more resources

Stable isotopes in wood cellulose of tree rings provide a high-resolution record of environmental conditions, yet intra-annual analysis of carbon and oxygen isotopes and their associations with physiological responses to seasonal environmental changes are still lacking. We analyzed tree-ring stable carbon (delta C-13) and oxygen (delta 18O) isotope variations in the earlywood (EW) and latewood (LW) of pines from a secondary forest (Pinus kesiya) and from a natural forest (Pinus armandii) in southwestern China. There was no significant difference between delta C-13(EW) and delta C-13(LW) in P. kesiya, while delta C-13(EW) was significantly higher than delta C-13(LW) in P. armandii. For both P. kesiya and P. armandii, delta C-13(EW) was highly correlated with previous years delta C-13(LW), indicating a strong carbon carry-over effect for both pines. The intrinsic water use efficiency (iWUE) in the earlywood of P. armandii was slightly higher than that of P. kesiya, and iWUE of both pine species showed an increasing trend, but at a considerably higher rate in P. kesiya. Respective delta C-13(EW) and delta C-13(LW) series were not correlated between the two pine species and could be influenced by local environmental factors. delta C-13(EW) of P. kesiya was positively correlated with July to September monthly mean temperature (MMT), whereas delta C-13(EW) of P. armandii was positively correlated with February to May MMT. Respective d18OEW and delta O-18(LW) in P. kesiya were positively correlated with those in P. armandii, indicating a strong common climatic forcing in d18O for both pine species. delta O-18(EW) of both pine species was negatively correlated with May relative humidity and delta O-18(EW) in P. armandii was negatively correlated with May precipitation, whereas delta O-18(LW) in both pine species was negatively correlated with precipitation during autumn months, showing a high potential for climate reconstruction. Our results reveal slightly higher iWUE in natural forest pine species than in secondary forest pine species, and separating earlywood and latewood of for delta O-18 analyses could provide seasonally distinct climate signals in southwestern China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available