4.8 Article

Fabrication of Antibacterial and Antiwear Hydroxyapatite Coatings via In Situ Chitosan-Mediated Pulse Electrochemical Deposition

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 5, Pages 5023-5030

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b15979

Keywords

hydroxyapatite; composite coating; pulse electrochemical deposition; antibacteria; frictional wear

Funding

  1. National Natural Science Foundation of China [51662038, 11572211]
  2. Science and Technology Innovation Project of Xinjiang Normal University [XSY201602005]
  3. Jiangsu Provincial Special Program of Medical Science [BL2012004]
  4. Jiangsu Provincial Clinical Orthopedic Center
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Although bioinert titanium has been widely applied in orthopedics and related fields, its usage is limited by its unsatisfying osteoinductivity, anti-infection capability, and wear-resistance. Osteoinductive apatite, coating can be fabricated on a titanium surface by electrochemical methods, but this causes bacterial adhesion and poor wear-resistance. On the basis of pulse electrochemical technology, a wear-resistance and antibacterial osteoinductive coating was fabricated through codeposition of hydroxyapatite (HA) and nano-Ag effectuated by the cohybridization ofchitosan (CS) with Ag+ and Ca2+ A composite coating formed with uniformly dispersed spherical nanoparticles was obtained at optimized deposition potential, Ag concentration, and apatite concentration. The nanocomposite coating shows excellent bioinductive activity; it promotes preferential growth on the (002) face, and needle-like ordered arrangement of apatite. Due to the mediation of CS hybridization, a compact structure is achieved in the HA/Ag composite coating which significantly enhances the wear-resistance of the coating and reduces the release of Ca2+ and Ag+ The antibacterial rate of the coating on Escherichia coli and Staphylococcus aureus is up to 99% according to the antibacterial test. In conclusion, a wear-resistant and long-term antibacterial bioactive nanocomposite coating is successfully fabricated on titanium surface through the strategy established in this study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available