4.7 Article

Prandtl model for concentration polarization and osmotic counter-effects in a 2-D membrane channel

Journal

DESALINATION
Volume 404, Issue -, Pages 341-359

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2016.09.026

Keywords

Numerical modeling; Concentration polarization; Osmotic pressure; Starling-Darcy law; Prandtl approximation

Ask authors/readers for more resources

An accurate 2-D numerical model that accounts for concentration polarization and osmotic effects is developed for the cross-flow filtration in a membrane channel. Focused on the coupling between laminar hydrodynamics and mass transfer, the numerical approach solves the solute conservation equation together with the steady Navier-Stokes equations under the Prandtl approximation, which offers a simplified framework to enforce the non-linear coupling between filtration and concentration polarization at the membrane surface. The present approach is first validated thanks to the comparison with classical exact analytical solutions for hydrodynamics and/or mass transfer, as well as with approximated analytical solutions that attempted at coupling the various phenomena. The effects of the main parameters in cross-flow reverse osmosis (RO) or nanofiltration (NF) (feed concentration, axial flow rate, operating pressure and membrane permeability) on streamlines, velocity profile, longitudinal pressure drop, local permeate flux and solute concentration profile are predicted with the present numerical model, and discussed. With the use of data reported from NF and RO experiments, the Prandtl approximation model is shown to accurately correlate both average permeate flux and local solute concentration over a wide range of operating conditions. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available