4.8 Article

Spatially selective remote magnetic actuation of identical helical micromachines

Journal

SCIENCE ROBOTICS
Volume 2, Issue 3, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scirobotics.aal2845

Keywords

-

Categories

Funding

  1. German Federal Ministry of Education and Research [13GW0069C, 13N11086]

Ask authors/readers for more resources

Magnetic micromachines can be controlled remotely inside the human body by application of external magnetic fields, making them promising candidates for minimally invasive local therapy delivery. For many therapeutic scenarios, a large team of micromachines is required, but a convincing approach for controlling individual team members is currently missing. We present a method for selective control of identical helical micromachines based on their spatial position. The micromachines are operated by uniform rotating fields, whereas spatial selection is achieved by application of a strong field gradient that locks all machines except those located inside a small movable volume. We deliver experimental evidence of three-dimensional selective actuation with a spatial selectivity on the order of millimeters over a workspace large enough for clinical applications. Selective control of teams of helical micromachines may improve minimally invasive therapeutic approaches and may lead to more flexible local drug delivery systems or adaptive medical implants. As an example, we propose a concept for adaptive radiation treatment in cancer therapy based on selective switching of radioactive sources distributed inside a tumor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available