4.6 Article

Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing

Journal

ELECTROCHIMICA ACTA
Volume 224, Issue -, Pages 346-354

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2016.12.078

Keywords

Porous ammonia-doped reduced graphene; oxide; Copper oxide nanoparticles; EPD; Glucose; Non-enzymatic; Electrochemistry

Funding

  1. Centre National de la Recherche Scientifique (CNRS)
  2. Lille1 University
  3. Hauts-de-France region
  4. CPER Photonics for Society
  5. ANR through FLAG-ERA JTC Graphtivity

Ask authors/readers for more resources

The paper reports on the preparation of N-doped porous reduced graphene oxide/copper oxide (ammonia-doped-prGO/CuO) nanocomposite on gold electrodes using electrophoretic deposition (EPD) from an ethanolic suspension of ammonia-doped-prGO and Cu(ClO4)(2) by applying a DC voltage. The ammonia-doped-prGO/CuO nanocomposite film thickness is controlled by varying the deposition time. Morphological analysis using scanning electron microscopy (SEM) showed the formation of a 3 dimensional structure with CuO nanoparticles being homogeneously embedded in the graphene layer. Xray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman analysis revealed that the deposited copper was in its oxidized form, mainly CuO. The Au/ammonia-doped-prGO/CuO electrode was successfully applied for non-enzymatic amperometric detection of glucose. Under optimized conditions, the electrode exhibited a sensitivity of 1210 mu mM(-1) cm(-2) with a detection limit of 0.25 p,M (S/N =3) over a wide concentration range (0.25 mu M to 6 mM) at an applied potential of +0.50 V vs. Ag/AgCl. The electrode material displayed good stability, excellent selectivity, and accurate measurement in healthy and diabetic human serum samples. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available