4.8 Article

Genetic defects in β-spectrin and tau sensitize C.elegans axons to movement-induced damage via torque-tension coupling

Journal

ELIFE
Volume 6, Issue -, Pages -

Publisher

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.20172

Keywords

-

Categories

Funding

  1. National Institute of Neurological Disorders and Stroke [R01NS092099-02, 5K99NS089942-02]
  2. Howard Hughes Medical Institute
  3. H2020 European Research Council [ERC-2014-CoG]

Ask authors/readers for more resources

Our bodies are in constant motion and so are the neurons that invade each tissue. Motion-induced neuron deformation and damage are associated with several neurodegenerative conditions. Here, we investigated the question of how the neuronal cytoskeleton protects axons and dendrites from mechanical stress, exploiting mutations in UNC-70 beta-spectrin, PTL-1 tau/MAP2-like and MEC-7 beta-tubulin proteins in Caenorhabditis elegans. We found that mechanical stress induces supercoils and plectonemes in the sensory axons of spectrin and tau double mutants. Biophysical measurements, super-resolution, and electron microscopy, as well as numerical simulations of neurons as discrete, elastic rods provide evidence that a balance of torque, tension, and elasticity stabilizes neurons against mechanical deformation. We conclude that the spectrin and microtubule cytoskeletons work in combination to protect axons and dendrites from mechanical stress and propose that defects in beta-spectrin and tau may sensitize neurons to damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available