4.6 Article

Cellular defects by deletion of ANO10 are due to deregulated local calcium signaling

Journal

CELLULAR SIGNALLING
Volume 30, Issue -, Pages 41-49

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2016.11.006

Keywords

TMEM16K; Anoctamin 10; ANO10; Apoptosis; Ca2+ signaling; Ion channels; Jejunum; Macrophages

Categories

Funding

  1. DFG [KU757/12-1, SFB699/A7, SFB699/A12]
  2. Cystic Fibrosis Trust [SRC003]
  3. Cystic Fibrosis Trust [SRC003] Funding Source: researchfish

Ask authors/readers for more resources

TMEM16K (ANO10) belongs to a family of ion channels and phospholipid scramblases. Mutations in ANO10 cause neurological and immunological defects, and abrogated ion transport. Here we show that Ano10 knockout in epithelial cells leads to defective ion transport, attenuated volume regulation and deranged Ca2+ signaling. Intestinal epithelial cells from Ano10 null mice are reduced in size and demonstrate an almost abolished spontaneous and TNF alpha-induced apoptosis. Similar defects were found in mouse peritoneal Ano10 null macrophages and in human THP1 macrophages with reduced ANO10 expression. A cell cycle dependent colocalization of Ano10 with acetylated tubulin, centrioles, and a submembranous tubulin containing compartment was observed in Fisher rat thyroid cells. Axs, the Drosophila ortholog of ANO10 is known for its role in mitotic spindle formation and association with the endoplasmic reticulum and Ca2+ signaling. We therefore propose that mutations in ANO10 cause cellular defects and genetic disorders through deranged local Ca2+ signaling. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available