4.6 Article

Recombination parameters of lifetime-limiting carrier-induced defects in multicrystalline silicon for solar cells

Journal

APPLIED PHYSICS LETTERS
Volume 110, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4977906

Keywords

-

Funding

  1. Australian Government through the Australian Renewable Energy Agency (ARENA) [2014/RND097]
  2. ECN (Energy research Centre of the Netherlands)
  3. Australian Research Council (ARC) through the Discovery Early Career Researcher Award (DECRA) [DE150100268]
  4. National Science Foundation (NSF) Graduate Research Fellowship [1122374]
  5. NSF Graduate Research Opportunities Worldwide

Ask authors/readers for more resources

In p-type multicrystalline silicon solar cells, carrier-induced degradation (CID) can cause up to 10% relative reduction in conversion efficiency. Although, a great concern has been drawn on this degradation in the photovoltaic community, the nature of this degradation is still yet unknown. In this contribution, the recombination parameters of the responsible defect causing this degradation are extracted via temperature and injection dependent lifetime spectroscopy. Three wafers from three different ingots were processed into cell precursor and lifetime structures for the study. Similar defect recombination parameters were obtained for all samples. Two candidates for the defect energy level were identified: E-t - E-i = -(0.32 +/- 0.05) eV or E-t - E-i = (0.21 +/- 0.05) eV in the lower and upper bandgap halves, respectively. The capture cross section ratios were found to be k = 56 +/- 23 or k = 49 +/- 21 for the lower and upper bandgap halves, respectively. Contrary to previous studies, these parameters have been extracted for the responsible defect of CID, without making assumptions regarding the defect energy level. The result allows to model and to predict the impact of this defect on the solar cell efficiency. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available