4.7 Article

The effect of NaCl on room-temperature-processed indium oxide nanoparticle thin films for printed electronics

Journal

APPLIED SURFACE SCIENCE
Volume 396, Issue -, Pages 912-919

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2016.11.060

Keywords

Printed electronics; Indium oxide; Nanoparticle X-ray photoelectron spectroscopy (XPS); Semiconductor; Agglomeration

Funding

  1. Helmholtz Association through Virtual Institute [VI-530]
  2. Ministry of Research and Education of the German State of Baden-Wurttemberg

Ask authors/readers for more resources

One of the major challenges in flexible electronics industry is the fabrication of high-mobility field-effect transistors ( FETs) at ambient conditions and on inexpensive polymer substrates compatible with roll-to-roll printing technology. In this context, a novel and general route towards room-temperature fabrication of printed FETs with remarkably high field-effect mobility ( mu(FET)) above 12 cm(2)/Vs has recently been developed. A detailed understanding of the chemical structure of the involved nanoparticle ( NP) thin films, prepared by chemical flocculation, is essential for further optimization of the charge transport properties of such devices. In this study, we thus analyze indium oxide NP thin films with and without NaCl additive using x-ray photoelectron spectroscopy ( XPS) and atomic force microscopy ( AFM). It is demonstrated that the introduction of a sodium chloride additive to the ink leads to a strongly altered film morphology and a modification of the NP shell. The results suggest that, as a consequence of the additive, the charge-transport barriers between individual indium oxide NPs are lowered, facilitating long-range charge percolation paths despite the presence of a significant concentration of carbonaceous residues. (C) 2016 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available