4.5 Article

Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

Journal

APPLIED GEOCHEMISTRY
Volume 78, Issue -, Pages 351-356

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.apgeochem.2017.01.017

Keywords

Earthworms; Calcium carbonate; Calcite; Carbon isotopes; Fractionation; Crystallization

Funding

  1. NERC Standard Research Grant [NE/H021914/1]
  2. NERC [NE/H021914/1, NE/H021914/2] Funding Source: UKRI
  3. Natural Environment Research Council [NE/H021914/2, NE/H021914/1] Funding Source: researchfish

Ask authors/readers for more resources

In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO3. Initially a milky fluid comprising micro-spherules of amorphous CaCO3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 C-omicron. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO3 present and by IRMS to determine delta C-13 values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The delta C-13 values of milky fluid and pouch granules became significantly more negative with increasing temperature (p <= 0.001). For samples from each temperature treatment, delta C-13 values became significantly (p <= 0.001) more negative from the milky fluid to the pouch granules to the soil granules (-13.77, -14.69 and -15.00 respectively at 10 C-omicron; -14.37, -15.07 and -15.18 respectively at 16 C-omicron and -14.89, -15.41 and -15.65 respectively at 20 C-omicron). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor epsilon(coicite-ACC) = -1.20 +/- 0.52%. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon and various CaCO3 polymorphs, this is the first documented evidence for C isotope fractionation between ACC and the calcite it recrystallizes to. This phenomenon may prove important for the interpretation of CaCO3-based C isotope environmental proxies. (C) 2017 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available