4.7 Article

Plug-and-Play ADMM for Image Restoration: Fixed-Point Convergence and Applications

Journal

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING
Volume 3, Issue 1, Pages 84-98

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCI.2016.2629286

Keywords

ADMM; deblurring; denoising; image restoration; inpainting; Plug-and-Play; Poisson noise; single photon imaging; super-resolution

Ask authors/readers for more resources

Alternating direction method of multiplier (ADMM) is a widely used algorithm for solving constrained optimization problems in image restoration. Among many useful features, one critical feature of the ADMM algorithm is its modular structure, which allows one to plug in any off-the-shelf image denoising algorithm for a subproblem in the ADMM algorithm. Because of the plug-in nature, this type of ADMM algorithms is coined the name Plug-and-Play ADMM. Plug-and-Play ADMM has demonstrated promising empirical results in a number of recent papers. However, it is unclear under what conditions and by using what denoising algorithms would it guarantee convergence. Also, since Plug-and-Play ADMM uses a specific way to split the variables, it is unclear if fast implementation can be made for common Gaussian and Poissonian image restoration problems. In this paper, we propose a Plug-and-Play ADMM algorithm with provable fixed-point convergence. We show that for any denoising algorithm satisfying an asymptotic criteria, called bounded denoisers, Plug-and-Play ADMM converges to a fixed point under a continuation scheme. We also present fast implementations for two image restoration problems on superresolution and single-photon imaging. We compare Plug-and-Play ADMM with state-of-the-art algorithms in each problem type and demonstrate promising experimental results of the algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available