4.6 Article

Tunable electronic properties of two-dimensional nitrides for light harvesting heterostructures

Journal

APPLIED PHYSICS LETTERS
Volume 110, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4973753

Keywords

-

Funding

  1. EU [644076]
  2. Marie Curie Actions (MSCA) [644076] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

We study the electronic properties of two-dimensional (2D) group-III nitrides BN, AlN, GaN, InN, and TlN by first-principles approaches. With increasing group-III atomic number, a decrease of the electronic gap from 6.7 eV to 0 eV takes place. 2D GaN and 2D InN in honeycomb geometry present a direct gap at C, while the honeycomb structures of BN and AlN tend to be indirect semiconductors with the valence band maximum at K. Alloying of the nitrides allows tuning the gap with cation composition. Interestingly, InxGa1-xN and InxTl1-xN alloys enable, with varying x, to construct type I or type II heterostructures. We demonstrate that it is possible to tailor the electronic and optical response from UV to IR. We suggest that 2D InGaN and InTlN heterostructures may efficiently harvest light and serve as building blocks for a future generation of III-V solar cells. Finally, 2D InTlN with a low In content is eligible as the emitter and detector for THz applications. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available