4.5 Review

Scenarios in tropical forest degradation: carbon stock trajectories for REDD

Journal

CARBON BALANCE AND MANAGEMENT
Volume 12, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13021-017-0074-0

Keywords

-

Funding

  1. SilvaCarbon, an interagency technical cooperation program of the US Government
  2. U.S. Agency for International Development (USAID)
  3. US Department of State
  4. University of Colorado Boulder Libraries Open Access Fund

Ask authors/readers for more resources

Background: Human-caused disturbance to tropical rainforests-such as logging and fire-causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i) develop short-term emissions factors (per area) for logging and fire degradation scenarios in tropical forests; and (ii) describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance. Results: Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (> 10 years) effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown. Conclusions: This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available