4.7 Article

Decision process to manage useful life of multi-stacks fuel cell systems under service constraint

Journal

RENEWABLE ENERGY
Volume 105, Issue -, Pages 590-600

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2017.01.001

Keywords

Fuel cell; PHM; Decision making; Scheduling; Useful life; Optimization

Funding

  1. Labex ACTION project [ANR-11-LABX-01-01]

Ask authors/readers for more resources

A management of multi-stacks fuel cell systems is proposed to extend systems useful life in a Prognostics and Health Management (PHM) framework. The problem consists in selecting at each time which fuel cell stacks have to run and which output power has to be chosen for each of them to satisfy a load demand as long as possible. Multi-stacks fuel cell system useful life depends not only on each stack useful life, but also on both the schedule and the operating conditions settings that define the contribution of each stack over time. As the impact of variable operating conditions on fuel cell lifetime is not well-known, a simplified representation of fuel cell behavior under wear and tear is used to estimate the available outputs over time and their associated Remaining Useful Lives (RUL). This health state prognostics model is configured to suit to Proton-Exchange Membrane Fuel Cells (PEMFC) specific characteristics. The proposed scheduling process makes use of an optimal approach based on a Mixed Integer Linear Program (MILP). Efficiency of the associated commitment strategy is assessed by comparison with basic intuitive strategies, considering constant and piecewise constant load demand profiles. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available