4.6 Article

Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle

Journal

PHYSICAL REVIEW B
Volume 95, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.075420

Keywords

-

Funding

  1. Faculty of Arts & Sciences Division of Science, Research Computing Group at Harvard University
  2. ARO MURI Award [W911NF-14-0247]
  3. Science and Technology Center for Integrated Quantum Materials, NSF [DMR-1231319]
  4. Office Of Internatl Science &Engineering
  5. Office Of The Director [967140] Funding Source: National Science Foundation

Ask authors/readers for more resources

The ability in experiments to control the relative twist angle between successive layers in two-dimensional (2D) materials offers an approach to manipulating their electronic properties; we refer to this approach as twistronics. A major challenge to theory is that, for arbitrary twist angles, the resulting structure involves incommensurate (aperiodic) 2D lattices. Here, we present a general method for the calculation of the electronic density of states of aperiodic 2D layered materials, using parameter-free Hamiltonians derived from ab initio density-functional theory. We use graphene, a semimetal, and MoS2, a representative of the transition-metal dichalcogenide family of 2D semiconductors, to illustrate the application of our method, which enables fast and efficient simulation of multilayered stacks in the presence of local disorder and external fields. We comment on the interesting features of their density of states as a function of twist angle and local configuration and on how these features can be experimentally observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available