4.7 Article

Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment

Journal

BIOGEOSCIENCES
Volume 14, Issue 3, Pages 671-681

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-14-671-2017

Keywords

-

Funding

  1. National Natural Science Foundation of China [41376129, 41476097, 31270452]
  2. Science Foundation of Huaihai Institute of Technology [Z2016007]
  3. Public Science and Technology Research Funds Projects of Ocean [201505022, 201405040, 201305021]
  4. earmarked fund for Modern Agro-industry Technology Research System in Shandong Province [SDAIT-26]
  5. Experimental Study Project on Ecological Simulation in Coastal Waters of Shandong Peninsula

Ask authors/readers for more resources

The development of golden tides is potentially influenced by global change factors, such as ocean acidification and eutrophication, but related studies are very scarce. In this study, we cultured a golden tide alga, Sargasssum muticum, at two levels of pCO(2) (400 and 1000 mu atm) and phosphate (0.5 and 40 mu M) to investigate the interactive effects of elevated pCO(2) and phosphate on the physiological properties of the thalli. Higher pCO(2) and phosphate (P) levels alone increased the relative growth rate by 41 and 48 %, the net photosynthetic rate by 46 and 55 %, and the soluble carbohydrates by 33 and 62 %, respectively, while the combination of these two levels did not promote growth or soluble carbohydrates further. The higher levels of pCO(2) and P alone also enhanced the nitrate uptake rate by 68 and 36 %, the nitrate reductase activity (NRA) by 89 and 39 %, and the soluble protein by 19 and 15 %, respectively. The nitrate uptake rate and soluble protein was further enhanced, although the nitrate reductase activity was reduced when the higher levels of pCO(2) and P worked together. The higher pCO(2) and higher P levels alone did not affect the dark respiration rate of the thalli, but together they increased it by 32% compared to the condition of lower pCO(2) and lower P. The neutral effect of the higher levels of pCO(2) and higher P on growth and soluble carbohydrates, combined with the promoting effect on soluble protein and dark respiration, suggests that more energy was drawn from carbon assimilation to nitrogen assimilation under conditions of higher pCO(2) and higher P; this is most likely to act against the higher pCO(2) that caused acid-base perturbation via synthesizing H+ transport-related protein. Our results indicate that ocean acidification and eutrophication may not boost golden tide events synergistically, although each one has a promoting effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available