3.9 Article

A cost-sensitive Bayesian combiner for reducing false positives in mammographic mass detection

Journal

BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK
Volume 64, Issue 1, Pages 39-52

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/bmt-2017-0032

Keywords

classification; detection; mammography; mass

Ask authors/readers for more resources

Mammography is the most widely used modality for early breast cancer detection. This work proposes a new computer-aided mass detection approach, in which a denoising method called BM3D is first applied to mammograms. Afterwards, using an adaptive segmentation algorithm, images are segmented to suspicious regions of interest (ROIs) and then a classifier is used to understand the features of true positive (TP) and false positive (FP) patterns. In this way, from selected suspicious ROIs, fractal dimension, texture and intensity features are extracted. Subsequently, a discretization approach followed by correlation-based feature selection (CFS) is combined with a genetic algorithm to obtain the most representative features. To neutralize the classifier's bias in favor of the major class in imbalanced datasets, an oversampling algorithm is used. In the next step, a cost-sensitive ensemble classifier based on a trainable combiner is proposed in order to reduce the number of FP samples. Finally, the presented method is validated on miniMIAS and INBreast datasets. The free-response receiver operating characteristic (FROC) analysis results prove the efficiency of the proposed approach. A sensitivity of 88% and false positive per image (FPpI) of 0.78 for miniMIAS and also a sensitivity of 86% and FPpI of 0.75 for INBreast dataset were obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available