4.7 Article

Representing nighttime and minimum conductance in CLM4.5: global hydrology and carbon sensitivity analysis using observational constraints

Journal

GEOSCIENTIFIC MODEL DEVELOPMENT
Volume 10, Issue 1, Pages 321-331

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/gmd-10-321-2017

Keywords

-

Funding

  1. DEB Ecosystem Science Cluster
  2. National Science Foundations [EF-1048481]
  3. ARC DECRA [DE120100518]
  4. National Science Foundation [0947837]
  5. National Center for Atmospheric Research
  6. Australian Research Council [DE120100518] Funding Source: Australian Research Council

Ask authors/readers for more resources

The terrestrial biosphere regulates climate through carbon, water, and energy exchanges with the atmosphere. Land-surface models estimate plant transpiration, which is actively regulated by stomatal pores, and provide projections essential for understanding Earth's carbon and water resources. Empirical evidence from 204 species suggests that significant amounts of water are lost through leaves at night, though land-surface models typically reduce stomatal conductance to nearly zero at night. Here, we test the sensitivity of carbon and water budgets in a global land-surface model, the Community Land Model (CLM) version 4.5, to three different methods of incorporating observed nighttime stomatal conductance values. We find that our modifications increase transpiration by up to 5% globally, reduce modeled available soil moisture by up to 50% in semi-arid regions, and increase the importance of the land surface in modulating energy fluxes. Carbon gain declines by up to similar to 4% globally and > 25% in semi-arid regions. We advocate for realistic constraints of minimum stomatal conductance in future climate simulations, and widespread field observations to improve parameterizations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available