4.6 Article

Myocardial interstitial levels of serotonin and its major metabolite 5-hydroxyindole acetic acid during ischemia-reperfusion

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00471.2016

Keywords

anesthetized rat; microdialysis technique; cardiac serotonin; SERT; extraneuronal monoamine transporter

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [24790791, 16K08514, 23592691, 26462774]
  2. Grants-in-Aid for Scientific Research [23592691, 15F15119, 24790791, 16K08514, 26462774] Funding Source: KAKEN

Ask authors/readers for more resources

The aim of this study was to examine the accumulation of serotonin (5-HT) and degradation of 5-HT taken up into cells in the ischemic region during myocardial ischemia-reperfusion. Using microdialysis technique in anesthetized rats, we monitored myocardial interstitial levels of 5-HT and its metabolite produced by monoamine oxidase (MAO), 5-hydroxyindole acetic acid (5-HIAA), during 30-min coronary occlusion followed by 45-min reperfusion, and investigated the effects of local administration of the MAO inhibitor pargyline and the 5-HT uptake inhibitor fluoxetine. In the vehicle group, the dialysate 5-HT concentration increased from 1.3 +/- 0.2 nM at baseline to 29.6 +/- 2.8 nM at 22.5-30 min of occlusion, but the dialysate 5-HIAA concentration did not change from baseline (9.9 +/- 1.1 nM). Upon reperfusion, the dialysate 5-HT concentration increased further to a peak (34.2 +/- 4.2 nM) at 0-7.5 min and then declined. The dialysate 5-HIAA concentration increased to 31.9 +/- 5.2 nM at 7.5-15 min of reperfusion and maintained this high level until 45 min. Pargyline markedly suppressed the increase in dialysate 5-HIAA concentration after reperfusion and increased the averaged dialysate 5-HT concentration during the reperfusion period. Fluoxetine suppressed the increase in dialysate 5-HT concentration during occlusion but did not change dialysate 5-HT or 5-HIAA concentration after reperfusion. During ischemia, 5-HT secreted from ischemic tissues accumulates but 5-HT degradation by MAO is suppressed. After reperfusion, degradation of 5-HT taken up into cells is enhanced and contributes to the clearance of accumulated 5-HT. This degradation following cellular uptake is dependent on MAO activity but not the fluoxetinesensitive uptake transporter. NEW & NOTEWORTHY By monitoring myocardial interstitial levels of 5-HT and its metabolite, 5-hydroxyindole acetic acid, we investigated 5-HT kinetics during myocardial ischemia-reperfusion. 5-HT accumulates but 5-HT degradation is suppressed during ischemia. After reperfusion, 5-HT degradation is enhanced and this degradation is dependent on monoamine oxidase activity but not fluoxetine-sensitive uptake transporter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available