4.6 Article

Glycerol-Modified Binary Layered Double Hydroxide Nanocomposites for Uranium Immobilization via Extended X-ray Absorption Fine Structure Technique and Density Functional Theory Calculation

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 5, Issue 4, Pages 3583-3595

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.7b00439

Keywords

Nanocomposites; Layered double hydroxides; Immobilization; U(VI); EXAFS

Funding

  1. Science Challenge Project [JCKY2016212A04]
  2. NSFC [91326202, 21577032, 21403064]
  3. Fundamental Research Funds for the Central Universities [JB2015001]
  4. Project of East China Institute of Technology Graduate Student Innovation Fund [YC2015-S273]

Ask authors/readers for more resources

Novel, efficient, glycerol-modified nanoscale layered double hydroxides (rods Ca/Al LDH-Gl and flocculent Ni/Al LDH-Gl) were successfully synthesized by a simple one-step hydrothermal synthesis route and showed excellent adsorption capacities for U(VI) from aqueous solutions under various environmental conditions. The advanced spectroscopy analysis confirmed the existence of abundant oxygen-containing functional groups (e.g., C-O, O-C=O, and C=O) on the surfaces of Ca/AI LDH-Gl and Ni/Al LDH-Gl, which could provide enough free active sites for the binding of U(VI). The maximum adsorption capacities of Macro-application (Environment U(VI) calculated from the Sips model were 266.5 mg.g(-1) for Ca/Al LDH-Gl and 142.3 mg.g(-1) for Ni/Al LDH-Gl at 298.15 K, and the higher adsorption capacity of Ca/Al LDH-Gl might be due to more functional groups and abundant high-activity Ca-O groups. Macroscopic experiments proved that the interaction of U(VI) on Ca/Al LDH-Gl and Ni/Al LDH-Gl was due to surface complexation and electrostatic interactions. The extended Xray absorption fine structure analysis confirmed that U(IV) did not transformation to U(VI) on solid particles, and stable inner sphere complexes were not formed by reduction interaction but by chemical adsorption. The density functional theory (DFT) calculations further evidenced that the higher adsorption energies (i.e., E-ad = 4.00 eV for Ca/AI LDH-Gl-UO22+ and E-ad = 2.43 eV for Ca/Al LDH-Gl-UO2CO3) were mainly attributed to stronger hydrogen bonds and electrostatic interactions. The superior immobilization performance of Ca/AI LDH-Gl supports a potential strategy for decontamination of UO22+ from wastewater, and it may provide new insights for the efficient removal of radionuclides in environmental pollution cleanup.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available