4.7 Article

Coherent absorption of light by graphene and other optically conducting surfaces in realistic on-substrate configurations

Journal

APL PHOTONICS
Volume 2, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4967802

Keywords

-

Funding

  1. Universita di Pisa [PRA_2015_0080]
  2. European Union [604391]

Ask authors/readers for more resources

Analytical formulas are derived describing the coherent absorption of light from a realistic multilayer structure composed by an optically conducting surface on a supporting substrate. The model predicts two fundamental results. First, the absorption regime named coherent perfect transparency theoretically can always be reached. Second, the optical conductance of the surface can be extrapolated from absorption experimental data even when the substrate thickness is unknown. The theoretical predictions are experimentally verified by analyzing a multilayer graphene structure grown on a silicon carbide substrate. The graphene thickness estimated through the coherent absorption technique resulted in good agreement with the values obtained by two other spectroscopic techniques. Thanks to the high spatial resolution that can be reached and high sensitivity to the probed structure thickness, coherent absorption spectroscopy represents an accurate and non-destructive diagnostic method for the spatial mapping of the optical properties of two-dimensional materials and of metasurfaces on a wafer scale. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available