3.9 Article

Optimization of regular offshore wind-power plants using a non-discrete evolutionary algorithm

Journal

AIMS ENERGY
Volume 5, Issue 2, Pages 173-192

Publisher

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/energy.2017.2.173

Keywords

wind energy; offshore; non-discrete evolutionary algorithm; continuous evolutionary algorithm; IRR; regular patterns; optimal configuration; gradient-based local search

Categories

Ask authors/readers for more resources

Offshore wind farms (OWFs) often present a regular configuration mainly due to aesthetical considerations. This paper presents a new evolutionary algorithm that optimizes the location, configuration and orientation of a rhomboid-shape OWF. Existing optimization algorithms were based on dividing the available space into a mess of cells and forcing the turbines to be located in the centre of a cell. However, the presented algorithm searches for the optimum within a continuous range of the eight parameters that define the OWF, which allows including a gradient-based local search operator to improve the optimization process. The study starts from a review of the economic data available in the bibliography relative to the most significant issues influencing the profitability of the investment in terms of the Internal Rate of Return (IRR). In order to address the distinctive characteristics of OWFs, specific issues arise which have been solved. The most important ones are: interpretation of nautical charts, utilization of the seabed map with different load-bearing capacities, and location of the shoreline transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available