4.6 Article

Expansion of Umbilical Cord Blood Aldehyde Dehydrogenase Expressing Cells Generates Myeloid Progenitor Cells that Stimulate Limb Revascularization

Journal

STEM CELLS TRANSLATIONAL MEDICINE
Volume 6, Issue 7, Pages 1607-1619

Publisher

WILEY
DOI: 10.1002/sctm.16-0472

Keywords

Umbilical cord blood; Aldehyde dehydrogenase; Angiogenesis; Peripheral artery disease; Hematopoietic progenitor cell expansion; Transplantation

Funding

  1. Heart and Stroke Foundation of Canada [GIA-13-0001612]

Ask authors/readers for more resources

Uncompromised by chronic disease-related comorbidities, human umbilical cord blood (UCB) progenitor cells with high aldehyde dehydrogenase activity (ALDH(hi) cells) stimulate blood vessel regeneration after intra-muscular transplantation. However, implementation of cellular therapies using UCB ALDH(hi) cells for critical limb ischemia, the most severe form of severe peripheral artery disease, is limited by the rarity (<0.5%) of these cells. Our goal was to generate a clinically-translatable, allogeneic cell population for vessel regenerative therapies, via ex vivo expansion of UCB ALDH(hi) cells without loss of pro-angiogenic potency. Purified UCB ALDH(hi) cells were expanded >18-fold over 6-days under serum-free conditions. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, only 15.1%+/- 1.3% of progeny maintained high ALDH-activity after culture. However, compared to fresh UCB cells, expansion increased the total number of ALDH(hi) cells (2.7-fold), CD34(+)/CD133(+) cells (2.8-fold), and hematopoietic colony forming cells (7.7-fold). Remarkably, injection of expanded progeny accelerated recovery of perfusion and improved limb usage in immunodeficient mice with femoral artery ligation-induced limb ischemia. At 7 or 28 days post-transplantation, mice transplanted with expanded ALDH(hi) cells showed augmented endothelial cell proliferation and increased capillary density compared to controls. Expanded cells maintained pro-angiogenic mRNA expression and secreted angiogenesis-associated growth factors, chemokines, and matrix modifying proteins. Coculture with expanded cells augmented human microvascular endothelial cell survival and tubule formation under serum-starved, growth factor-reduced conditions. Expanded UCB-derived ALDH(hi) cells represent an alternative to autologous bone marrow as an accessible source of pro-angiogenic hematopoietic progenitor cells for the refinement of vascular regeneration-inductive therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available