4.3 Article

Effect of Nano-ZrO2 on the Properties of Al-Al2O3 Nanocomposites Prepared by Mechanical Alloying

Journal

SILICON
Volume 10, Issue 4, Pages 1523-1531

Publisher

SPRINGER
DOI: 10.1007/s12633-017-9635-9

Keywords

Al-based composites; Nano ZrO2; Mechanical properties; AC conductivity; Mechanical alloying

Ask authors/readers for more resources

In the present work, mechanical alloying was used to prepare Al-20wt.% Al2O3 metal-matrix nanocomposites having up to 4wt.% ZrO2 at the expense of Al2O3. The powders were milled for different time intervals. To characterize the powders after milling, x-ray diffraction and transmission electron microscopy were used to identify the phase composition, crystallite size and morphology. In order to study the sinterability, the milled powders were cold pressed and sintered in argon atmosphere at different firing temperatures up to 470 degrees C for 1 h. The relative density and apparent porosity of the sintered composites were determined according to Archimedes principle. Moreover, the microstructure was examined by a scanning electron microscope attached with an energy dispersive spectrometer (EDS). Microhardness and AC conductivity of sintered composites were also measured. The results pointed out that the increasing of milling time is responsible for uniform distribution of Al2O3-ZrO2 particles in the Al matrix as well as remarkable increases in relative density, microhardness and AC conductivity of the sintered specimens. Also, the relative density was affected considerably by the increasing of sintering temperature. Moreover, increasing of ZrO2 content led to a significant decrease in the crystal size of the milled powders and increase in the microhardness of the sintered compacts. No changes were observed on the conductivity after addition of ZrO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available