4.7 Article

A New Spatial Attraction Model for Improving Subpixel Land Cover Classification

Journal

REMOTE SENSING
Volume 9, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/rs9040360

Keywords

spatial attraction model (SAM); subpixel mapping (SPM); land cover; mixed pixel; spatial distribution; hard classification

Funding

  1. China's National Science and Technology Support Program [41471277]

Ask authors/readers for more resources

Subpixel mapping (SPM) is a technique that produces hard classification maps at a spatial resolution finer than that of the input images produced when handling mixed pixels. Existing spatial attraction model (SAM) techniques have been proven to be an effective SPM method. The techniques mostly differ in the way in which they compute the spatial attraction, for example, from the surrounding pixels in the subpixel/pixel spatial attraction model (SPSAM), from the subpixels within the surrounding pixels in the modified SPSAM (MSPSAM), or from the subpixels within the surrounding pixels and the touching subpixels within the central pixel in the mixed spatial attraction model (MSAM). However, they have a number of common defects, such as a lack of consideration of the attraction from subpixels within the central pixel and the unequal treatment of attraction from surrounding subpixels of the same distance. In order to overcome these defects, this study proposed an improved SAM (ISAM) for SPM. ISAM estimates the attraction value of the current subpixel at the center of a moving window from all subpixels within the window, and moves the window one subpixel per step. Experimental results from both Landsat and MODIS imagery have proven that ISAM, when compared with other SAMs, can improve SPM accuracies and is a more efficient SPM technique than MSPSAM and MSAM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available