4.7 Article

Supervised and Semi-Supervised Multi-View Canonical Correlation Analysis Ensemble for Heterogeneous Domain Adaptation in Remote Sensing Image Classification

Journal

REMOTE SENSING
Volume 9, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/rs9040337

Keywords

heterogeneous domain adaptation; transfer learning; multi-view canonical correlation analysis ensemble; semi-supervised learning; canonical correlation weighted voting; ensemble learning; image classification

Funding

  1. China Postdoctoral Science Foundation [2016M592872]
  2. Xinjiang Uyghur Autonomous Region High Level Talents Introduction Project [Y648031]
  3. National Natural Science Foundation of China [41601440, 41601354, 41471098]

Ask authors/readers for more resources

In this paper, we present the supervised multi-view canonical correlation analysis ensemble (SMVCCAE) and its semi-supervised version (SSMVCCAE), which are novel techniques designed to address heterogeneous domain adaptation problems, i.e., situations in which the data to be processed and recognized are collected from different heterogeneous domains. Specifically, the multi-view canonical correlation analysis scheme is utilized to extract multiple correlation subspaces that are useful for joint representations for data association across domains. This scheme makes homogeneous domain adaption algorithms suitable for heterogeneous domain adaptation problems. Additionally, inspired by fusion methods such as Ensemble Learning (EL), this work proposes a weighted voting scheme based on canonical correlation coefficients to combine classification results in multiple correlation subspaces. Finally, the semi-supervised MVCCAE extends the original procedure by incorporating multiple speed-up spectral regression kernel discriminant analysis (SRKDA). To validate the performances of the proposed supervised procedure, a single-view canonical analysis (SVCCA) with the same base classifier (Random Forests) is used. Similarly, to evaluate the performance of the semi-supervised approach, a comparison is made with other techniques such as Logistic label propagation (LLP) and the Laplacian support vector machine (LapSVM). All of the approaches are tested on two real hyperspectral images, which are considered the target domain, with a classifier trained from synthetic low-dimensional multispectral images, which are considered the original source domain. The experimental results confirm that multi-view canonical correlation can overcome the limitations of SVCCA. Both of the proposed procedures outperform the ones used in the comparison with respect to not only the classification accuracy but also the computational efficiency. Moreover, this research shows that canonical correlation weighted voting (CCWV) is a valid option with respect to other ensemble schemes and that because of their ability to balance diversity and accuracy, canonical views extracted using partially joint random view generation are more effective than those obtained by exploiting disjoint random view generation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available