4.3 Review

New photodynamic therapy with next-generation photosensitizers

Journal

ANNALS OF TRANSLATIONAL MEDICINE
Volume 5, Issue 8, Pages -

Publisher

AME PUBL CO
DOI: 10.21037/atm.2017.03.59

Keywords

Photodynamic therapy (PDT); photosensitizer; chlorin; tumor-associated macrophage (TAM); Warburg effect

Funding

  1. JSPS KAKENHI [25288028, 26460947, 26860520]
  2. JSPS
  3. Deutsche Forschungsgemeinschaft
  4. Japan Advanced Molecular Imaging Program (J-AMP) of the Ministry of Education, Culture, Sports, Science and Technology of Japan
  5. Yokoyama Foundation for Clinical Pharmacology
  6. Aichi Cancer Research Foundation
  7. Japan Agency for Medical Research and Development, AMED
  8. Grants-in-Aid for Scientific Research [17K09356, 25288028, 26860520, 26460947] Funding Source: KAKEN

Ask authors/readers for more resources

Photodynamic therapy (PDT) is a non-invasive antitumor treatment that uses the combination of a photosensitizer, tissue oxygen, and visible light irradiation to produce cytotoxic reactive oxygen species, predominantly singlet oxygen. Currently, first-generation PDT using porfimer sodium with an excimer dye laser, and second-generation PDT using talaporfin sodium PDT with a semiconductor laser are approved by health insurance for use in Japan. However, the cancer cell specificity and selectivity of these treatments are inadequate. Cancer cells consume higher levels of glucose than normal cells and this phenomenon is known as the Warburg effect. Thus, we developed a third-generation PDT, based on the Warburg effect, by synthesizing a novel photosensitizer, sugar-conjugated chlorin, with increased cancer cell-selective accumulation. Glucose-conjugated chlorin (G-chlorin) PDT showed significantly stronger antitumor effects than second-generation talaporfin PDT. We also found that PDT with G-chlorin induced immunogenic cell death which is characterized by the secretion, release, or surface exposure of damage-associated molecular patterns (DAMPs), including calreticulin (CRT) and the high-mobility group box 1 (HMGB1) protein. Mannose-conjugated chlorin (M-chlorin) PDT which targets the mannose receptors on the surface of cancer cells and tumor-associated macrophages (TAMs) in cancer tissue stroma also showed very strong antitumor effects. These novel PDTs using glucose or M-chlorins stand as new candidates for very effective, next-generation PDTs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available