4.7 Article

Multi-Decadal Surface Water Dynamics in North American Tundra

Journal

REMOTE SENSING
Volume 9, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/rs9050497

Keywords

water; remote sensing; Landsat; time series; Arctic; tundra; lake

Ask authors/readers for more resources

Over the last several decades, warming in the Arctic has outpaced the already impressive increases in global mean temperatures. The impact of these increases in temperature has been observed in a multitude of ecological changes in North American tundra including changes in vegetative cover, depth of active layer, and surface water extent. The low topographic relief and continuous permafrost create an ideal environment for the formation of small water bodies-a definitive feature of tundra surface. In this study, water bodies in Nunavut territory in northern Canada were mapped using a long-term record of remotely sensed observations at 30 m spatial resolution from the Landsat suite of instruments. The temporal trajectories of water extent between 1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-year study period with over 168,000 showing a significant (p < 0.05) trend in surface area. Approximately 55% of water bodies with a significant trend were increasing in size while the remaining 45% were decreasing in size. The overall net trend for water bodies with a significant trend is 0.009 ha year(-1) per water body.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available