4.7 Article

Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes

Journal

ECOLOGY
Volume 98, Issue 4, Pages 909-919

Publisher

WILEY
DOI: 10.1002/ecy.1697

Keywords

dispersal limitation; ecosystem function; local diversity; metacommunity; R*; regional diversity; species sorting

Categories

Funding

  1. NSF [DEB1353919, DEB1353139]
  2. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena, Leipzig - German Research Foundation [FZT 118]
  3. Direct For Biological Sciences
  4. Division Of Environmental Biology [1622425] Funding Source: National Science Foundation

Ask authors/readers for more resources

Recent work linking community structure and ecosystem function has primarily focused on the effects of local species richness but has neglected the dispersal-dependent processes of community assembly that are ultimately involved in determining community structure and its relation to ecosystems. Here we combine simple consumer-resource competition models and metacommunity theory with discussion of case studies to outline how spatial processes within metacommunities can alter community assembly and modify expectations about how species diversity and composition influence ecosystem attributes at local scales. We argue that when community assembly is strongly limited by dispersal, this can constrain ecosystem functioning by reducing positive selection effects (reducing the probability of the most productive species becoming dominant) even though it may often also enhance complementarity (favoring combinations of species that enhance production even though they may not individually be most productive). Conversely, excess dispersal with strong source-sink relations among heterogeneous habitats can reduce ecosystem functioning by swamping local filters that would normally favor better-suited species. Ecosystem function is thus most likely maximized at intermediate levels of dispersal where both of these effects are minimized. In this scenario, we find that the selection effect is maximized, while complementarity is often reduced and local diversity may often be relatively low. Our synthesis emphasizes that it is the entire set of community assembly processes that affect the functioning of ecosystems, not just the part that determines local species richness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available