4.7 Article

Remote Sensing Image Classification Based on Stacked Denoising Autoencoder

Journal

REMOTE SENSING
Volume 10, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/rs10010016

Keywords

deep learning; stacked denoising autoencoder; Back Propagation neural network; land cover classification

Ask authors/readers for more resources

Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised Greedy layer-wise training algorithm is used to train each layer in turn for more robust expressing, characteristics are obtained in supervised learning by Back Propagation (BP) neural network, and the whole network is optimized by error back propagation. Finally, Gaofen-1 satellite (GF-1) remote sensing data are used for evaluation, and the total accuracy and kappa accuracy reach 95.7% and 0.955, respectively, which are higher than that of the Support Vector Machine and Back Propagation neural network. The experiment results show that the proposed method can effectively improve the accuracy of remote sensing image classification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available