4.6 Article

Visual-Inertial Monocular SLAM With Map Reuse

Journal

IEEE ROBOTICS AND AUTOMATION LETTERS
Volume 2, Issue 2, Pages 796-803

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LRA.2017.2653359

Keywords

Sensor fusion; SLAM; visual-based navigation

Categories

Funding

  1. Spanish government [DPI2015-67275]
  2. Aragon regional government [DGA T04-FSE]
  3. Ministerio de Educacion Scholarship [FPU13/04175]

Ask authors/readers for more resources

In recent years there have been excellent results in visual-inertial odometry techniques, which aim to compute the incremental motion of the sensor with high accuracy and robustness. However, these approaches lack the capability to close loops and trajectory estimation accumulates drift even if the sensor is continually revisiting the same place. In this letter, we present a novel tightly coupled visual-inertial simultaneous localization and mapping system that is able to close loops and reuse its map to achieve zero-drift localization in already mapped areas. While our approach can be applied to any camera configuration, we address here the most general problem of a monocular camera, with its well-known scale ambiguity. We also propose a novel IMU initialization method, which computes the scale, the gravity direction, the velocity, and gyroscope and accelerometer biases, in a few seconds with high accuracy. We test our system in the 11 sequences of a recent micro-aerial vehicle public dataset achieving a typical scale factor error of 1% and centimeter precision. We compare to the state-of-the-art in visual-inertial odometry in sequences with revisiting, proving the better accuracy of our method due to map reuse and no drift accumulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available