4.7 Article

Surface Patterning of Gold Nanoparticles on PEG-Based Hydrogels to Control Cell Adhesion

Journal

POLYMERS
Volume 9, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/polym9050154

Keywords

poly(ethylene glycol) hydrogels; gold nanoparticles; micro-contact deprinting; pattern transfer; cell adhesion

Funding

  1. China Scholarship Council

Ask authors/readers for more resources

We report on a versatile and easy approach to micro-pattern gold nanoparticles (Au NPs) on 8-arm poly(ethylene glycol)-vinyl sulfone thiol (8PEG-VS-SH) hydrogels, and the application of these patterned Au NPs stripes in controlling cell adhesion. Firstly, the Au NPs were patterned on silicon wafers, and then they were transferred onto reactive, multifunctional 8PEG-VS-SH hydrogels. The patterned, micrometer-sized Au NPs stripes with variable spacings ranging from 20 mu m to 50 mu m were created by our recently developed micro-contact deprinting method. For this micro-contact deprinting approach, four different PEG-based stamp materials have been tested and it was found that the triblock copolymer PEG-PPG-PEG-(3BC) stamp established the best transfer efficiency and has been used in the ongoing work. After the successful creation of micro-patterns of Au NPs stripes on silicon, the patterns can be transferred conveniently and accurately to 8PEG-VS-SH hydrogel films. Subsequently these Au NPs patterns on 8PEG-VS-SH hydrogels have been investigated in cell culture with murine fibroblasts (L-929). The cells have been observed to adhere to and spread on those nano-patterned micro-lines in a remarkably selective and ordered manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available