4.7 Article

Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration

Journal

POLYMERS
Volume 9, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/polym9120732

Keywords

polyaniline layers; poly(o-anisidine) films; DC plasma polymerization method; conductivity measurements

Funding

  1. [RO PN-II-RU-TE-2014-4-2412]

Ask authors/readers for more resources

This work is focused on the structural and morphological investigations of polyaniline and poly(o-anisidine) polymers generated in a direct current glow discharge plasma, in the vapors of the monomers, without a buffer gas, using an oblique angle-positioned substrate configuration. By atomic force microscopy and scanning electron microscopy we identified the formation of worm-like interlinked structures on the surface of the polyaniline layers, the layers being compact in the bulk. The poly(o-anisidine) layers are flat with no kind of structures on their surfaces. By Fourier transform infrared spectroscopy we identified the main IR bands characteristic of polyaniline and poly(o-anisidine), confirming that the polyaniline chemical structure is in the emeraldine form. The IR band from 1070 cm(-1) was attributed to the emeraldine salt form of polyaniline as an indication of its doping with H+. The appearance of the IR band at 1155 cm(-1) also indicates the conducting protonated of polyaniline. The X-ray diffraction revealed the formation of crystalline domains embedded in an amorphous matrix within the polyaniline layers. The interchain separation length of 3.59 angstrom is also an indicator of the conductive character of the polymers. The X-ray diffraction pattern of poly(o-anisidine) highlights the semi-crystalline nature of the layers. The electrical conductivities of polyaniline and poly(o-anisidine) layers and their dependence with temperature are also investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available