4.7 Article

Interfacial Polyelectrolyte Complex Spinning of Cellulose Nanofibrils for Advanced Bicomponent Fibers

Journal

BIOMACROMOLECULES
Volume 18, Issue 4, Pages 1293-1301

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.7b00059

Keywords

-

Funding

  1. Academy of Finland [264677]
  2. Emil Aaltonen Foundation
  3. Tlina and Antti Herlin Foundation
  4. Jenny and Antti Wihuri Foundation
  5. Academy of Finland (AKA) [264677, 264677] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

Fiber spinning of anionic TEMPO-oxidized cellulose (TOCN) nanofibrils with polycations by interfacial polyelectrolyte complexation is demonstrated. The formed fibers were mostly composed of cellulose nanofibrils and the polycations were a minor constituent, leading to yield and ultimate strengths of ca. 100 MPa and ca. 200 MPa, and Young's modulus of ca. 15 GPa. Stretching of the as-formed wet filaments of TOCN/polycation by 20% increased the Young's modulus, yield strength, and ultimate tensile strength by approximately 45, 36, and 26%, respectively. Importantly, feasibility of compartmentalized wound bicomponent fibers by simultaneous spinning of two fibers of different compositions and entwining them together was shown. This possibility was further exploited to demonstrate reversible shape change of a bicomponent fiber directly by humidity change, and indirectly by temperature changes based on thermally dependent humidity absorption. The demonstrated route for TOCN-based fiber preparation is expected to open up new avenues in the application of nanocelluloses in advanced fibrous materials, crimping, and responsive smart textiles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available