4.6 Article

Pioneer cells established by the [SWI+] prion can promote dispersal and out-crossing in yeast

Journal

PLOS BIOLOGY
Volume 15, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.2003476

Keywords

-

Funding

  1. National Science Foundation [1122374]
  2. Graduate Research Fellowship

Ask authors/readers for more resources

To thrive in an ever-changing environment, microbes must widely distribute their progeny to colonize new territory. Simultaneously, they must evolve and adapt to the stresses of unpredictable surroundings. In both of these regards, diversity is key-if an entire population moved together or responded to the environment in the same way, it could easily go extinct. Here, we show that the epigenetic prion switch [SWI+] establishes a specialized subpopulation with a pioneer phenotypic program in Saccharomyces cerevisiae. Cells in the pioneer state readily disperse in water, enabling them to migrate and colonize new territory. Pioneers are also more likely to find and mate with genetically diverse partners, as inhibited mating-type switching causes mother cells to shun their own daughters. In the nonprion [swi(-)] state, cells instead have a sttler phenotype, forming protective flocs and tending to remain in their current position. Settler cells are better able to withstand harsh conditions like drought and alkaline pH. We propose that these laboratory observations reveal a strategy employed in the wild to rapidly diversify and grant distinct, useful roles to cellular sub-populations that benefit the population as a whole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available