4.5 Article

A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli

Journal

BMC BIOTECHNOLOGY
Volume 17, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12896-017-0337-6

Keywords

Osmotolerance; RpoB; Succinic acid; Sugar transporter; RNA-seq

Funding

  1. Key deployment project of the Chinese Academy of Sciences [ZDRW-ZS-2016-3]
  2. National High Technology Research and Development Program of China [2014AA021205]
  3. National Natural Science Foundation of China [31522002, 31300089]
  4. Tianjin Key Technology R&D program of Tianjin Municipal Science and Technology Commission [13ZCZDSY05300]

Ask authors/readers for more resources

Background: Escherichia coli suffer from osmotic stress during succinic acid (SA) production, which reduces the performance of this microbial factory. Results: Here, we report that a point mutation leading to a single amino acid change (D654Y) within the beta-subunit of DNA-dependent RNA polymerase (RpoB) significantly improved the osmotolerance of E. coli. Importation of the D654Y mutation of RpoB into the parental strain, Suc-T110, increased cell growth and SA production by more than 40% compared to that of the control under high glucose osmolality. The transcriptome profile, determined by RNA-sequencing, showed two distinct stress responses elicited by the mutated RpoB that counterbalanced the osmotic stress. Under non-stressed conditions, genes involved in the synthesis and transport of compatible solutes such as glycine-betaine, glutamate or proline were upregulated even without osmotic stimulation, suggesting a pre-defense mechanism maybe formed in the rpoB mutant. Under osmotic stressed conditions, genes encoding diverse sugar transporters, which should be down-regulated in the presence of high osmotic pressure, were derepressed in the rpoB mutant. Additional genetic experiments showed that enhancing the expression of the mal regulon, especially for genes that encode the glycoporin LamB and maltose transporter, contributed to the osmotolerance phenotype. Conclusions: The D654Y single amino acid substitution in RpoB rendered E. coli cells resistant to osmotic stress, probably due to improved cell growth and viability via enhanced sugar uptake under stressed conditions, and activated a potential pre-defense mechanism under non-stressed conditions. The findings of this work will be useful for bacterial host improvement to enhance its resistance to osmotic stress and facilitate bio-based organic acids production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available