4.7 Article

Polymer Nanocomposites with Cellulose Nanocrystals Featuring Adaptive Surface Groups

Journal

BIOMACROMOLECULES
Volume 18, Issue 2, Pages 517-525

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.6b01639

Keywords

-

Funding

  1. Swiss National Science Foundation [406640_136911]
  2. Adolphe Merkle Foundation
  3. Swiss National Science Foundation (SNF) [406640_136911] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Cellulose nanocrystals (CNCs) are mechanically rigid, toxicologically benign, fiber-like nanoparticles. They can easily be extracted from renewable biosources and have attracted significant interest as reinforcing fillers in polymers. We here report the modification of CNCs with the 2-ureido-4[1H]pyrimidinone (UPy) motif as an adaptive compatibilizer, which permits the dispersion of UPy-modified CNCs in nonpolar as well as polar media. In toluene, the UPy motifs appear to form intra-CNC dimers, so that the particles are somewhat hydrophobized and well-dispersible in this nonpolar solvent. By contrast, the UPy motifs dissociate in DMF and promote dispersibility through interactions with this polar solvent. We have exploited this adaptiveness and integrated UPy-modified CNCs into nonpolar and polar host polymers, which include different poly(ethylene)s, a polystyrene-block-polybutadiene-block-polystyrene elastomer and poly(ethylene oxideco-epichlorohydrin). All nanocomposites display an increase of stiffness and strength in comparison to the neat polymer, and some compositions retain a high elongation at break, even at a filler content of 15% w/w.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available