4.6 Review

Is inflammatory micronucleation the key to a successful anti-mitotic cancer drug?

Journal

OPEN BIOLOGY
Volume 7, Issue 11, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsob.170182

Keywords

paclitaxel; anti-mitotic; cancer; chemotherapy; kinesin-5; inflammation

Funding

  1. NIH-GM
  2. [NIH-GM39565]

Ask authors/readers for more resources

Paclitaxel is a successful anti-cancer drug that kills cancer cells in two-dimensional culture through perturbation of mitosis, but whether it causes tumour regression by anti-mitotic actions is controversial. Drug candidates that specifically target mitosis, including inhibitors of kinesin-5, AurkA, AurkB and Plk1, disappointed in the clinic. Current explanations for this discrepancy include pharmacokinetic differences and hypothetical interphase actions of paclitaxel. Here, we discuss post-mitotic micronucleation as a special activity of taxanes that might explain their higher activity in solid tumours. We reviewdata showing that cells which exit mitosis in paclitaxel are highly micronucleated and suffer post-mitotic DNA damage, and that these effects are much stronger for paclitaxel than kinesin-5 inhibitors. We propose that post-mitotic micronucleation promotes inflammatory signalling via cGAS-STING and other pathways. In tumours, this signalling may recruit cytotoxic leucocytes, damage blood vessels and prime T-cell responses, leading to whole-tumour regression. We discuss experiments that are needed to test the micronucleation hypothesis, and its implications for novel anti-mitotic targets and enhancement of taxane-based therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available