4.5 Article

LncRNA-ANCR regulates the cell growth of osteosarcoma by interacting with EZH2 and affecting the expression of p21 and p27

Journal

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s13018-017-0599-7

Keywords

LncRNA-ANCR; Osteosarcoma; EZH2; p21; p27

Categories

Ask authors/readers for more resources

Background: Osteosarcoma (OS) is one of the most common malignant tumors developed in the bone. EZH2 has been found to play pivotal roles in the development of various cancers. LncRNA-ANCR (anti-differentiation ncRNA) has been reported to interact with EZH2 and regulated osteoblast differentiation. Our study aimed to investigate the effect of lncRNA-ANCR on the tumorigenesis of osteosarcoma and explore the underlying molecular mechanism. Methods: RT-PCR was performed to detect the messenger RNA (mRNA) levels of lncRNA-ANCR, EZH2, p21, and p27 in OS tissues and cell lines. The cell proliferation, transwell invasion, and migration assays were conducted to evaluate the influence of lncRNA-ANCR depletion on the growth of OS cells. RNA pull-down assay was carried out to detect the interaction between lncRNA-ANCR and EZH2. Correlation between the expression of lncRNA-ANCR and the expression of EZH2 were analyzed by cross-tabulation. Results: LncRNA-ANCR is highly expressed in both OS tissues and cell lines. Reduced expression of lncRNA-ANCR inhibited the cell proliferation, invasion, and migration of OS cells. The cell apoptosis rate was also increased with the overexpression of lncRNA-ANCR. Mechanistically, downregulation of lncRNA-ANCR reduced the mRNA level of EZH2 and increased the expression of p21 and p27 at both mRNA and protein levels. LncRNA-ANCR interacted with EZH2 and their expression abundance was positively correlated in OS patients. Conclusion: LncRNA-ANCR inhibited the cell proliferation, migration, and invasion of OS cells possibly through interacting with EZH2 and regulating the expression of p21 and p27.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available