4.5 Article

Genetic and Phytochemical Analysis to Evaluate the Diversity and Relationships of Mate (Ilex paraguariensis A.ST.-HIL.) Elite Genetic Resources in a Germplasm Collection

Journal

CHEMISTRY & BIODIVERSITY
Volume 14, Issue 3, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbdv.201600177

Keywords

Mate; Ilex paraguariensis; Genetic diversity; Phytochemical composition; Phenolic compounds; Methylxanthines

Funding

  1. CNPq (National Counsel of Technological and Scientific Development)
  2. PTI (Parque Tecnologico Itaipu)

Ask authors/readers for more resources

The aim of this study was to evaluate the phytochemical and genetic diversity, relationships and identification of mate (Ilex paraguariensis A.St.-Hil.) elite genetic resources belonging to the Brazilian germplasm collection and mate breeding program. Mate has been studied due to the presence of phytochemical compounds, especially methylxanthines and phenolic compounds. The samples were collected from the leaves of 76 mate elite genetic resources (16 progenies x 5 localities). Total DNA was extracted from mate leaves and 20 random primers were used for DNA amplification. Methylxanthines (caffeine and theobromine) and phenolic compounds (chlorogenic, neochlorogenic, and criptochlorogenic acids) were quantified by HPLC. The genetic divergence estimated was higher within (92%) than among (8%) the different populations. Analysis of genetic distance between origins provided the formation of two groups by UPGMA cluster analysis, with higher polymorphism (94.9%). The average content of caffeine ranged from 0.01 to 1.38% and theobromine of 0.10 - 0.85% (w/w). The caffeoylquinic acids concentrations (1.43 - 5.38%) showed a gradient 3-CQA > 5-CQA > 4-CQA. The coefficient of genetic variation (CVg) was of low magnitude for all mono-caffeoylquinics acids. Significant correlations (positive and negative) were observed between the phytochemical compounds. Genetic diversity analysis performed by RAPD markers showed a greater intra-populational diversity; genetic resources with low caffeine and higher theobromine content were identified and can be used in breeding programs; the correlation between methylxanthines and phenolic compounds can be used as a good predictor in future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available