4.8 Article

Delivery of Liposomal Quantum Dots via Monocytes for Imaging of Inflamed Tissue

Journal

ACS NANO
Volume 11, Issue 3, Pages 3038-3051

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b00016

Keywords

quantum dots; liposomes; monocytes; inflammation; carotid injury; nanomedicine; fluorescence imaging

Funding

  1. Israel Science Foundation [811/13]

Ask authors/readers for more resources

Quantum dots (QDs), semiconductor nanocrystals, are fluorescent nanoparticles of growing interest as an imaging tool of a diseased tissue. However, a major concern is their biocompatibility, cytotoxicity, and fluorescence instability in biological milieu, impeding their use in biomedical applications, in general, and for inflammation imaging, in particular. In addition, for an efficient fluorescent signal at the desired tissue, and avoiding systemic biodistribution and possible toxicity, targeting is desired. We hypothesized that phagocytic cells of the innate immunity system (mainly circulating monocytes) can be exploited as transporters of specially designed liposomes containing QDs to the inflamed tissue. We developed a liposomal delivery system of QDs (LipQDs) characterized with high encapsulation yield, enhanced optical properties including far red emission wavelength and fluorescent stability, high quantum yield, and protracted fluorescent decay lifetime. Treatment with LipQDs, rather than free QDs, exhibited high accumulation and retention following intravenous administration in carotid-injured rats (an inflammatory model). QD monocyte colocalization was detected in the inflamed arterial segment only following treatment with LipQDs. No cytotoxicity was observed following LipQD treatment in cell cultures, and changes in liver enzymes and gross histopathological changes were not detected in mice and rats, respectively. Our results suggest that the LipQD formulation could be a promising strategy for imaging inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available