4.3 Article

Paclitaxel-induced increase in mitochondrial volume mediates dysregulation of intracellular Ca2+ in putative nociceptive glabrous skin neurons from the rat

Journal

CELL CALCIUM
Volume 62, Issue -, Pages 16-28

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2017.01.005

Keywords

-

Categories

Funding

  1. National Institutes of Health [T32 NS073548, R01NS083347]

Ask authors/readers for more resources

We have recently demonstrated that in a rat model of chemotherapy-induced peripheral neuropathy (CIPN), there is a significant decrease in the duration of the depolarization-evoked Ca2+ transient in small diameter, IB4+, and capsaicin-responsive neurons innervating the glabrous skin of the hindpaw. This change was specific to the transient duration and significantly smaller if not undetectable in neurons innervating the dorsal skin of the hindpaw or the skin of the inner thigh. Given the importance of mitochondria in intracellular Ca2+ regulation and the findings of chemotherapy-associated increase in mitotoxicity along the sensory neuron axons, we hypothesized that CIPN is due to both increases and decreases in mitochondria function, with changes manifest in distinct subpopulations of afferents. To begin to test this hypothesis, we used confocal microscopy and Ca2+ imaging in combination with pharmacological manipulations to study paclitaxel-induced changes in retrograde tracer-labeled neurons from naive, vehicle-treated, and paclitaxel-treated rats. Paclitaxel treatment was not associated with decreased mitochondrial membrane potential or increased superoxide levels in the somata of putative nociceptive glabrous skin neurons. However, it was associated with significant increases in the relative contribution of mitochondria to the control of the evoked Ca2+ transient duration in putative nociceptive glabrous skin neurons, as well as increases in mitotracker and Tom20 staining which reflected an increase in mitochondria(volume. Furthermore, the relative contribution of the sarco-endoplasmic reticulum Ca2+ ATPase to the regulation of the duration of the depolarization evoked Ca2+ transient was also increased in this subpopulation of neurons from paclitaxel treated rats. Our results indicate that the paclitaxel-induced decrease in the duration of the evoked Ca2+ transient is due to both direct and indirect influences of mitochondria. It remains to be determined if and how these changes contribute to the manifestation of CIPN. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available