4.8 Article

Oil-Impregnated Nanoporous Oxide Layer for Corrosion Protection with Self-Healing

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 27, Issue 15, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201606040

Keywords

-

Funding

  1. US Office of Naval Research (ONR) [N00014-14-1-0502]
  2. ONR Defense University Research Instrumentation Program Award [N00014-11-1-0841]

Ask authors/readers for more resources

The major drawback of current passivation techniques for preventing corrosion is the lack of ability to withstand any external damages or local defects. In this study, oil-impregnated nanoporous anodic aluminum oxide (AAO) layers are investigated to overcome such limitations and thus advance corrosion protection. By completely filling hydrophobized nanopores with oil via a solvent exchange method, a highly water-repellent surface that prevents the penetration of corrosive media into the AAO layer and hence the corrosion of aluminum is achieved. The impregnation of oil into the hydrophobic nanoporous AAO layer enhances the corrosion resistance of an AAO layer by two and four orders of magnitude compared to that of a hydrophobic (i.e., air-entrained) and a bare (hydrophilic) AAO, respectively. In the presence of local defects, the oil impregnated within the hydrophobic nanoporous AAO layer naturally permeates into the defects and ultimately inhibits the exposure of the aluminum surface to corrosive media. Whereas the corrosion current density of the air-entrained hydrophobic AAO layer increases by more than 30 times after cracks, that of the oil-impregnated AAO layer increases by no more than 4 times, showing superior anticorrosion property even after there are cracks, owing to the effective self-healing capability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available