4.8 Article

Impact of carbon nanotube defects on fracture mechanisms in ceramic nanocomposites

Journal

CARBON
Volume 115, Issue -, Pages 402-408

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2017.01.029

Keywords

-

Funding

  1. US Department of Energy, Office of Basic Energy Sciences [DE-FG02-10ER46771, DEFG02-08ER46493]

Ask authors/readers for more resources

Carbon nanotubes (CNTs) can improve the fracture toughness of ceramic composites. It is widely believed that defects in the CNTs will alter key properties that ultimately dictate composite toughening. However, to date there have been no studies that directly correlate these specific properties to controlled defect levels in CNTs. This type of investigation is presented here, using ceramic nanocomposites with a polymer derived ceramic (PDC) matrix, reinforced with multiwalled CNTs. This work includes basic fracture measurements on full composite films, combined with careful testing of individual CNTs embedded in the same PDC matrix. The defect levels in these CNTs were controlled with high energy carbon ions. By using this approach, it was possible to directly correlate defect levels with the interfacial shear strength (IFSS) of the CNT/PDC interface, the CNT fracture strengths, and the pull-out lengths observed after fracture of the full composites. The radiation induced defects led to substantial increases in the IFSS, and only a marginal decrease is observed in the measured fracture strength. Based on this, the shorter pull-out lengths that occurred with higher defect levels were primarily attributed to stronger bonding at the CNT/PDC interface. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available