4.6 Article

Anisotropy, phonon modes, and lattice anharmonicity from dielectric function tensor analysis of monoclinic cadmium tungstate

Journal

PHYSICAL REVIEW B
Volume 95, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.165202

Keywords

-

Funding

  1. National Science Foundation (NSF) through the Center for Nanohybrid Functional Materials [EPS-1004094]
  2. Nebraska Materials Research Science and Engineering Center [MRSEC DMR-1420645]
  3. University of Nebraska-Lincoln
  4. J. A. Woollam Co., Inc.
  5. J. A. Woollam Foundation
  6. [CMMI 1337856]
  7. [EAR 1521428]

Ask authors/readers for more resources

We determine the frequency dependence of four independent Cartesian tensor elements of the dielectric function for CdWO4 using generalized spectroscopic ellipsometry within mid-infrared and far-infrared spectral regions. Different single crystal cuts, (010) and (001), are investigated. From the spectral dependencies of the dielectric function tensor and its inverse we determine all long-wavelength active transverse and longitudinal optic phonon modes with A(u) and B-u symmetry as well as their eigenvectors within the monoclinic lattice. We thereby demonstrate that such information can be obtained completely without physical model line-shape analysis in materials with monoclinic symmetry. We then augment the effect of lattice anharmonicity onto our recently described dielectric function tensor model approach formaterials with monoclinic and triclinic crystal symmetries [ M. Schubert et al., Phys. Rev. B 93, 125209 (2016)], and we obtain an excellent match between all measured and modeled dielectric function tensor elements. All phonon mode frequency and broadening parameters are determined in our model approach. We also perform density functional theory phonon mode calculations, and we compare our results obtained from theory, from direct dielectric function tensor analysis, and from model line- shape analysis, and we find excellent agreement between all approaches. We also discuss and present static and above reststrahlen spectral range dielectric constants. Our data for CdWO4 are in excellent agreement with a recently proposed generalization of the Lyddane-Sachs-Teller relation for materials with low crystal symmetry [ M. Schubert, Phys. Rev. Lett. 117, 215502 (2016)].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available