4.8 Article

Colloidal Synthesis of Air-Stable CH3NH3PbI3 Quantum Dots by Gaining Chemical Insight into the Solvent Effects

Journal

CHEMISTRY OF MATERIALS
Volume 29, Issue 8, Pages 3793-3799

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.7b01100

Keywords

-

Funding

  1. National Natural Science Foundation of China [21573018]
  2. Beijing Nova program [xx2014B040]

Ask authors/readers for more resources

Because of the superior optical properties and potential applications in display technology, colloidal synthesis of halide perovskite quantum dots has been intensively studied. Although great successes have been made in the fabrication of green emissive CH3NH3PbBr3 quantum dots, the fabrication of stable iodide-based CH3NH3PbI3 quantum dots remains a great challenge because of their sensitivity to moisture in the open air. Even in a glovebox, the colloidal CH3NH3PbI3 quantum dots obtained from N,N-dimethylformamide suffer from instability caused by fast degradation within days to weeks. In this work, we investigated the interactions between perovskite precursors and various polar solvents as well as their influence on the crystallization of CH3NH3PbI3 in reprecipitation synthesis. By gaining chemical insight into the coordination effects, we can explain the degradation of CH3NH3PbI3 to the defective crystals with coordinated solvents on the surface and/or intrinsic inner iodine vacancies. On the basis of this understanding, we fabricated air-stable CH3NH3PbI3 quantum dots with a tunable size from 6.6 to 13.3 nm by selecting noncoordinated acetonitrile as a good solvent through ligand-assisted precipitation synthesis. The fabrication can be processed under ambient conditions, and the resulting CH3NH3PbI3 quantum dots exhibit tunable emission with high photoluminescence quantum yields (maximum of similar to 46%) as well as good stability. Moreover, the quantum confinement effects in CH3NH3PbI3 quantum dots were discussed by correlating the size-dependent photoluminescence properties with theoretical calculations, which can be described by the infinite quantum well approximation model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available