4.6 Review

The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences

Journal

FRONTIERS IN EARTH SCIENCE
Volume 5, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/feart.2017.00032

Keywords

autotroph productivity; aquatic ecosystems; C:N:P ratios; excretion; feces; herbivore-driven nutrient recycling; nitrogen; phosphorus

Funding

  1. Research Foundation Flanders (FWO) [12N2615N]
  2. AfricanBioServices project from the European Union's Horizon research and innovation programme [641918]
  3. US National Science Foundation [0918993, 1255159]
  4. Netherlands Institute of Ecology (NIOO-KNAW) [6272]
  5. Division Of Environmental Biology
  6. Direct For Biological Sciences [1255159] Funding Source: National Science Foundation
  7. Division Of Environmental Biology
  8. Direct For Biological Sciences [0918993] Funding Source: National Science Foundation

Ask authors/readers for more resources

It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N) and phosphorus (P) recycled through herbivore release (i.e., waste N:P) aremainly determined by the stoichiometric composition of the herbivore's food (food N:P) and its body nutrient content (body N:P). Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C):N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces) and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available