4.8 Article

Reusable Cellulose-Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyte-Gated Transistors

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 27, Issue 16, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201606755

Keywords

-

Funding

  1. European Commission (ERC-StG) [GA 640598]
  2. BET-EU [GA 692373]
  3. FEDER funds through COMPETE
  4. National Funds through FCT - Portuguese Foundation for Science and Technology [POCI-01-0145-FEDER-007688, UID/CTM/50025, EXPL/CTM-NAN/1184/2013, PTDC/CTM-NAN/5172/2014]
  5. FCT - Portuguese Foundation for Science and Technology through AdvaMTech PhD program [PD/BD/52627/2014]
  6. Fundação para a Ciência e a Tecnologia [EXPL/CTM-NAN/1184/2013, PD/BD/52627/2014, PTDC/CTM-NAN/5172/2014] Funding Source: FCT

Ask authors/readers for more resources

A new concept for reusable eco-friendly hydrogel electrolytes based on cellulose is introduced. The reported electrolytes are designed and engineered through a simple, fast, low-cost, and eco-friendly dissolution method of microcrystalline cellulose at low temperature using an aqueous LiOH/urea solvent system. The cellulose solution is combined with carboxymethyl cellulose, followed by the regeneration and simultaneous ion incorporation. The produced free standing cellulose-based electrolyte films exhibit interesting properties for application in flexible electrochemical devices, such as biosensors or electrolyte-gated transistors (EGTs), because of their high specific capacitances (4-5 mu F cm(-2)), transparency, and flexibility. Indium-gallium-zinc-oxide EGTs on glass with laminated cellulose-based hydrogel electrolytes (CHEs) as the gate dielectric are produced presenting a low working voltage (<2 V), showing an on-off current ratio (I-on/off) of 106, a subthreshold swing lower than 0.2 V dec(-1), and saturation mobility (mu(Sat)) reaching 26 cm(2) V-1 s(-1). The flexible CHE-gated transistors on paper are also demonstrated, which operate at switching frequencies up to 100 Hz. Combining the flexibility of the EGTs on paper with the reusability of the developed CHEs is a breakthrough toward biodegradable advanced functional materials allied with disposable/recyclable and low-cost electronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available