4.7 Article

Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 409, Issue 11, Pages 2873-2883

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-017-0232-y

Keywords

L-Lysine; Graphene; Multiwalled carbon nanotube; Amperometry; Enzyme electrode

Funding

  1. Ankara University Research Fund [14L0430005]

Ask authors/readers for more resources

Highly sensitive L-lysine enzyme electrodes were constructed by using poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine (PVF/MWCNTs-GEL) and poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine-graphene (PVF/MWCNTs-GEL/GR) composites as sensing interfaces and their performances were evaluated. Lysine oxidase (LO) was immobilized onto the composite modified glassy carbon electrodes (GCE) by crosslinking using glutaraldehyde and bovine serum albumin. Effects of pH value, enzyme loading, applied potential, electrode composition, and interfering substances on the amperometric response of the enzyme electrodes were discussed. The analytical characteristics of the enzyme electrodes were also investigated. The linear range, detection limit, and sensitivity of the LO/PVF/MWCNTs-GEL/GCE were 9.9 x 10(-7)-7.0 x 10(-4) M, 1.8 x 10(-7)M(S/N = 3), and 13.51 mu AmM-1 cm(-2), respectively. PVF/MWCNTs-GEL/GR-based L-lysine enzyme electrode showed a short response time (< 5 s) and a linear detection range from 9.9 x 10(-7) to 7.0 x 10(-4) M with good sensitivity of 17.8 mu A mM(-1) cm-2 and a low detection limit of 9.2 x 10(-8) M. The PVF/MWCNTs-GEL/GR composite-based L-lysine enzyme electrode exhibited about 1.3-fold higher sensitivity than its MWCNTs-based counterpart and its detection limit was superior to the MWCNTs-based one. In addition, enzyme electrodes were successfully applied to determine L-lysine in pharmaceutical sample and cheese.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available