4.7 Article

Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity

Journal

CHEMOSPHERE
Volume 174, Issue -, Pages 380-389

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.02.008

Keywords

Hydroxyapatite; Adsorption membrane; Organic micropollutants; Hydrophilicity

Funding

  1. National Key Scientific Program-Nanoscience and Nanotechnology [2011CB933700]
  2. National Natural Science Foundation of China [61605221, 21277146, 61273066, 11205204, 61374017]

Ask authors/readers for more resources

A biocompatible and uniquely defined hydroxyapatite (HAP) adsorption membrane with a sandwich structure was developed for the removal of organic micropollutants for the first time. Both the adsorption and membrane technique were used for the removal of organic micropollutants. The hydrophilicity and hydrophobicity of the HAP adsorbent and membrane were tunable by controlling the surface structure of HAP. The adsorption of organic micropollutants on the HAP adsorbent was studied in batch experiments. The adsorption process was fit with the Freundlich model, while the adsorption kinetics followed the pseudo-second-order model. The HAP membrane could remove organic micro pollutants effectively by dynamic adsorption in both aqueous and ethanol solutions. The removal efficiencies of organic micropollutants depended on the solution composition, membrane thickness and hydrophilicity, flow rate, and the initial concentration of organic micropollutants. The adsorption capacities of the HAP membrane with a sandwich structure (membrane thickness was 0.3 mm) were 6700, 6510, 6310, 5960, 5490, 5230, 4980 and 4360 L m(-2) for 1-naphthyl amine, 2-naphthol, bisphenol S, propranolol hydrochloride, metolachlor, ethinyl oestradiol, 2,4-dichlorophenol and bisphenol A, respectively, when the initial concentration was 3.0 mg L-1. The biocompatible HAP adsorption membrane can be easily regenerated by methanol and was thus demonstrated to be a novel concept for the removal of organic micropollutants from both aqueous and organic solutions. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available